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TECHNICAL MEMORANDUM

ON THE DESIGN OF STRUCTURAL COMPONENTS USING MATERIALS

WITH TIME-DEPENDENT PROPERTIES

I. INTRODUCTION

With the increased use of polymer matrix composite materials for aerospace applications,

design engineers are faced with the need for knowledge of environmental effects on the functional
behavior of structures. A variety of epoxies are widely used as a binding agent or matrix for fiber

reinforced composites. Thermoset polymers are often used over thermoplastic polymers because of
their better thermal stability and chemical resistance. A great advantage of thermoset polymers is

their higher resistance to creep and stress relaxation. Typical thermoset matrix materials are

epoxies, polyesters, and vinyl esters. Although they have relatively better creep characteristics than

thermoplastics, they will still "relax" as a function of time, load, temperature, and other environ-
mental factors. The understanding of this viscoelastic behavior when designing with composite

materials is the topic of this report.

During the typical preliminary design phase of composite material structures, basic classical

lamination theory (CLT) solutions are used to obtain stress, strain, deflections, natural frequency,

and buckling strength of the structure analyzed. With the increased emphasis on long-term

aerospace structures (10 to 30 years useful life), it is of great importance that viscoelastic effects

also be included in the early design phase in order to obtain knowledge of the structural/functional
behavior of the hardware after an extended period of time. With analytical representation of the

material characteristics, the composite design could possibly require modification of initial dimen-

sions and geometry in order to meet critical functional requirements at the end of their useful life.

This report presents one of the widely used methods, namely the elastic-viscoelastic corre-

spondence principle, in the analysis of viscoelastic structural materials. For this report, the concern
is with the basic time dependency of the viscoelastic material properties. The goal is to present the

design engineer with an effective method to analyze, in closed form or numerically, and to design
time-dependent structures. The problem investigated is one of the most basic problems in structural

design, "beams."

It is the author's goal to provide information for structural design engineers to consider during

the inception and preliminary design of any structure with time-dependent properties. The methods

presented are proven and widely accepted yet simple to understand and apply.

II. THE ELASTIC BEAM PROBLEM

The classical problem of pure bending of beams with constant cross section is chosen, since

the basic equations for stress, strain, deflection, and natural frequency have been well established. I-3

For purposes of this report, a cantilever beam with a single load applied at its free end will be con-

sidered. The solution derivation will have the usual assumptions. These are:



1. The beamis thin. This implies that thethicknessis muchsmaller thananyof theother
physical dimensions.

+

The deflection of the beam in the direction of the applied load is small compared to the
beam thickness. (This assumption has been shown to be applicable even in the case of
relatively large resulting deflections.)4

3. The in-plane strains ex, ey, and exy are small compared to unity.

4. Transverse shear strains eyz and exz are negligible.

5. The material obeys Hooke's law.

6. Rotatory inertia terms are negligible.

.

8.

There are no body forces.

The material is isotropic.

tion,

A. Determination of Stress and Strain

The bending stress in a one-dimensional beam can be determined from the following equa-

Me

O'b=--
I

where M is the bending moment, c is the distance from the neutral axis to the outermost surface,
and I is the moment of inertia of the beam cross section. For the beam configuration shown in
figure 1, the bending moment can be expressed as:

M = -P(L - x), (la)
where

P=pb

c = -t/2 (for the top (tension) surface of the beam)

I = bt3/12 (for a rectangular cross section).

Substituting these values into equation (1), one obtains:

6P(L - x)

Orb - bt 2 (2)

(1)

=



P
(lb/in)

(in)

P

y - - t (in)

(in)

Figure 1. Cantilever beam configuration.

Following Hooke's, law one can express the axial strain caused by the applied bending

moment by simply dividing equation (2) by the modulus of elasticity (Young's modulus) of the beam

material. In this manner one obtains:

6P(L-x) (3)
eb = Ebt 2

B. Determination of Deflection

The formulation which links the curvature of the central line of the beam cross section with

the applied bending moment is called the Euler-Bernoulli law. This is expressed in differential form

as:

d2w M
- (4)

dx 2 E1

With the knowledge that the slope and deflection at the fixed end of the beam are zero, equation (4)

can be integrated twice to yield the following expression for the deflection at the free end of the

beam:

4PL3 (5)
w Ebt3 .

C. Determination of Natural Frequency

For the one-dimensional beam problem, classical linear elastic beam theory yields the

following frequency equation in the absence of in-plane forces:

E1 o4W O2W

+ m--_t2 = 0
(6)



With the knowledgethat the slopeanddeflectionvanishat thefixed endand theshearforce and
momentarezeroat the freeend, this equationcanbeusedto obtainthe variousbendingvibration
modesof the beam.Theresultingcharacteristicequationof thebeamis:

where
cosAL coshAL = - 1 , (7)

_4 _ mog_ 2 (8)

E1

Solving equation (7) for A L and substituting the results into equation (8) yields the following

expression for the first or natural frequency of the beam:

I EIo9 = 3.51601 mL 4 (9)

lII. THE SINGLE-PHASE VISCOELASTIC BEAM PROBLEM

A. Material Properties Characterization

In order to obtain a solution to any structural design problem where the material analyzed

has time-dependent properties such as plastics, elastomers, and resin-based matrix composite

materials, an analytical expression for the relaxation modulus E(t) and Poisson's ratio v(t) must be

developed. The relaxation modulus is obtained from standard stress relaxation tests. In these tests,
the viscoelastic material is subjected to a constant strain. Under the influence of this strain, the

material will relax; and the stress will gradually decrease. The stress is measured at specific time
intervals, and the relaxation modulus is plotted as a function of time. These data are then curve fitted

to a function which can be readily manipulated to perform the necessary analysis for the solution of

the problem. A very common function used is the Prony series curve fit due to Gaspard Francois
Clair Marie Riche de Prony (1755-1839). A form of this function is:

f(t) = A + E Bi e-_'t
i=1

(10)

Recent investigations have produced methods for obtaining the coefficients and exponents of this

function automatically with the aid of computers. 5 6 For purposes of this report, the following function
will be used for the relaxation modulus:

where
E(t) = A+B le-rV+B2e-r2t+B3e-_'3t ,

A = 180,000 ?'1 = 1,000

B_ = 5,000 ?'2 = 10

B,z = 5,000 ?'3 = 0.10

B 3 = 170,000

(11)

4

t



The time-dependent Poisson's ratio is obtained from the relaxation modulus data and from

the knowledge of the bulk modulus of elasticity of the material. The bulk modulus of elasticity can be

expressed as:

K - E(t) (12)
3(1 - 2 v(t))

Solving for v(t) one obtains:

v(t)= 1 E(t) (13)
2 6K

Substituting equation (11) into equation (13) and expanding, one obtains the following expression:

v (t) = A 13+B 13e -T_t+B23e-7"lt+B33e-Tlt , (14)

where

1 A B 2
A13 = B23 -

2 6K 6K

B_ B 3
B13 = B33 -

6K 6K

Figures 2 and 3 show plots of the relaxation modulus and Poisson's ratio for the Prony functions of

equations (1 1) and (14), respectively.

4e+5

3e+5

2e+5

le+5

.0001 .001 .01 .I 1 10 100 1000 10000

Figure 2.

Log of time (hours)

Relaxation modulus of a single-phase viscoelastic material.

5



Vm(t)

0.44

0.42

0.40

0.38

0.36

0.34
• • "'=_1

.0001 .001 .0l .I 1 10 100 1000 10000

Log of time (hours)

Figure 3. Poisson's ratio of a single-phase viscoelastic material.

B. Elastic-Viscoelastic Correspondence Principle

A very effective method of solution of time-dependent structural problems is obtained by
applying the Laplace transform to the time-dependent functions. This removes the time variable, and

the analysis problem for the viscoelastic body is converted to an "associated elastic" problem. This

method allows the solution of the viscoelastic problem by simply expressing the constitutive equa-
tions and boundary conditions as functions of the Laplace transform parameter s. Once a solution to

the "associated elastic" problem is obtained in the Laplace domain, it can be inverted into the origi-

nal time domain, and a solution to the original viscoelastic problem is developed. For a single-phase

material exhibiting properties that are time dependent, the solution of the beam problem becomes

fairly straightforward. In fact, by using the "associated elastic" problem approach which is officially
known as the "elastic-viscoelastic correspondence principle," this problem and many others can be

solved in closed form. This method has been successfully used and documented by many authors. 7-9

It will be used in this report to demonstrate its simplicity and usefulness to the design engineer
when designing structures with time-dependent materials.

The solutions derived in this report assume linearly viscoelastic materials. This means that,

for any time interval, the time-dependent functions can be assumed proportionally linear to the

applied constant load. Also a material is assumed linearly viscoelastic if the combined effects of two

or more simultaneously applied loads or displacements can be expressed as the sum of the individ-

ual effects when the same loads or displacements are applied separately.

m

6



Equation (11) canbe expressedin the Laplacedomainas:

= A__+ )
s s+Yl s+?'2 s+Y3

The "associated elastic" expression for the relaxation modulus can be obtained by multiplying

equation (15) by the Laplace parameter s. 8 In this manner, one obtains:

E(s) = sE(s)= A+ sB---L+ sB2 ! sB3
s+Yl s+Y2 s+?'3

Following this same procedure, the expression for the "associated elastic" Poisson's ratio is

expressed as:

v(s) = sT(s)= A13 + sB1-----A-3+ sB23 + sB3-----2-3
s+Yl s+Y2 s+Y3

C. Determination of Time-Dependent Strain

Any applied loads, either constant or varying with time, must also be transformed into the

Laplace domain. So if, in the time domain, equation (3) is expressed as:

where

S(x) P(t)
gb(t ) -

E(t)

6(L-x)

S(x) - bt 2
(where t is thickness),

(15)

(16)

(16a)

(17)

then, in the Laplace domain, equation (17) becomes:

Substituting equation (16) into (18) and combining all terms, one obtains, after some algebraic

manipulations:

where

s3+fls2+f2s+A )eb(S) = S(x)P o
L1 s4 + L2 s3 + L3 s2 + L4s

(18)

(19)



f_=_+½+_

f2 = _½+½Y3+73_

f4= ½ +?'3

f5=_3

f6 = _+73

f7 = _1_

f8 = _+72
fg=_

L_= A+ BI+ BE+ /_

L2 = 3:1+ _f4 + 82:6+ 83fs

L 3 = A f2 4- B1f 5 -1- B2f 7 -F B3f 9

L4= af3

The ratio of polynomials in equation (19) can be expressed as:

$3 + fl S2 + f2 S + f3 _ Fa(s)

S(LlS3 + L2s2 + L3s + L4) sGa(s)

(20)

The roots of the cubic equation Ga (s) can be obtained, allowing the expression .to be written as:

Co(s)--(,+z )(s+z2)(s+z3) (21)

It is important to point out that for the physical problem, these roots should never have an imaginary
component. This knowledge can be used as a check to verify that the numerical calculations have

been performed appropriately. In fact, all roots in equation (21) should be real and negative for a

material with a modulus that can be characterized as exponentially decaying.

One should notice that equation (20) is a quotient of two polynomials with no common fac-
tors, and the degree of the numerator is lower than that of the .denominator. This is the classical

fraction that can be solved in a straightforward manner by application of Heaviside's partial fraction
expansion, lo Following Heaviside's procedure, the total derivative of the denominator of equation
(20) can be expressed as:

or

 [sCo(s)]= sd[ca(s)] Co(s)
ds '

d[sGa(s)] + + 2L3s + L 4 •4L1 s3 3L2 s2

(22)

(23)

Equation (20) can now be expressed as a sum of partial fractions as:

Fa(s) _ MI+ M2 + M3 + M4
sGa(s) s sq-Z 1 s+A 2 s-t-Z 3

(24)

where

,=

s--



M2 --

Fa(s) [

M3 _-"

M_

Fa(s)

d[saa(s)] s=_,,

Fa(s) ]

Substituting equation (24) into equation (19) yields the expression for axial strain due to bending in

the Laplace domain:

S(x)Po(Ml+ M2 4 M3 + M4
E b (s)=

(s s+_l s+;t2 s+_3
(25)

Taking the inverse transformation of equation (25) yields the final expression for the time-depen-

dent axial strain due to bending:

eb(t) = S(x) Po(Ml + M2e-'_'t+ M3e-_'2t+ M4e-_':) . (26)

D. Determination of Time-Dependent Deflection

Equation (5) is the expression for maximum deflection of the cantilever beam under study.

Following the same procedure as for the viscoelastic strain calculations, the deflection can be writ-

ten as a function of the time-dependent variables:

FP(O]
w(t)= QL--E j ,

(27)

where

(where t is thickness)

In the Laplace domain, equation (27) can be written as:

w(s)= Q s2-_(s). .
(28)



Oneshouldnoticethat theonly differencebetweenequation(28) andequation(18) is in the
replacementof the term S(x) with the constant Q. Since both these terms are independent of time, it

is a straightforward matter to express the time-dependent deflection as in equation (25). This
expression is:

w(t)=QPo(M 1 + M2e-_', ' + M3e-_', ' + M4e -_',') . (29)

IV. THE TWO-PHASE VISCOELASTIC BEAM PROBLEM

The formulation for strain and deflection obtained in section HI is applicable for linearly

viscoelastic materials which are isotropic. Although many plastics can be analyzed in this manner,
the majority of the viscoelastic materials used for aerospace structural applications are two phase.

This means that they are composed of one phase that exhibits time-dependent properties and

another phase that does noL This is the case for many composite materials, in particular the epoxy-

or resin-based two-phase systems. For example, graphite/epoxy, boron/epoxy, and silicon-
carbide/epoxy are considered two-phase composites.

A. Micromechanics Determination of Material Properties

In order to identify the time-dependent material properties of the two-phase composite., we
must look at the interaction between the time-dependent and time-independent components at a

microscopic level. This heterogeneous look at the composite system is known as micromechanics. In

this report, the classical stiffness approach to micromechanics is used. l_ There are some basic
resi/icilbns on the composite material. For example, the composite ply (lamina) resulting from the

constituent parts must be macroscopically homogeneous and macroscopically orthotropic. It must be

linearly viscoelastic and initially stress-free. For the constituents, the fibers are homogeneous,

linearly elastic, isctropic, regularly spaced, and perfectly aligned; the matrix is homogeneous, linearly
viscoelastic, and isotropic. In addition, the bonds between the fibers and the matrix are assumed to

be perfect (no voids). Although these restrictions are seemingly stringent, modem manufacturing

methods combined with material characterization at a macroscopic level (E11, E22, Gl2, etc.) can be

used to "back-out" the necessary constituent characteristics vm(t ), etc._.
1

The binder or matrix of the composite material used in this report has a relaxation modulus

described by equation (11). In this manner, one has:

Em(t ) = A 1 + Ble -v,t + 132e-r_t + B3 e-r'' (3O)

Following the micromechanics approach to stiffness, a "rule of mixtures" expression for the appar-

ent time-dependent Young's modulus in the direction of the fibers can be obtained. This is:

Ell(t)= EfVf + Em(t)Vm , (31)

10

=



where

Ef = Young's modulus for an isotropic fiber

V/= fiber volume content for the composite material

E m (t) = relaxation modulus for the matrix

V m = matrix volume content for the composite material.

In the direction transverse to the fibers, the apparent Young's modulus is expressed as:

E22(t ) = Ef Era(t)

EfVm+Em(t)Vf

(32)

Several approaches for the accurate determination of the apparent in-plane shear modulus G12(t)

have been investigated. Using a variational analysis approach, Foye 12 developed an expression for a

square array of fibers in the laminate. This represented the best closed-form estimates of this

orthotropic constant for a unidirectional composite ply. It is expressed, in this report, as follows:

G_2(t) = G_t__._)[(4-_r)+_tN(t)+4 (4- _)N(t)+4N(t)7r] ' (33)

where

Era(t) (34)
Gm(t) = 2[1+ Vm(t) ] '

G/(_t+4Vf)+Gm(t)(_r-4Vf)

N(t)= GI(Tc-4Vf ) + Gm(t)(_r +4VI)
(35)

(7/=2(1E/ +v:)
(36)

Poisson's ratio for the matrix material will be described by equation (14) or:

Vm(t ) = A13+ B13 e-ylt +B23 e-r't +B33 e-y3t (37)

The major Poisson's ratio for the unidirectional composite lamina can be written using the rule of

mixtures in the same manner as the time-dependent Young's modulus E_(t):

Vl2(t)= vfV/ + Vm(t)V m , (38)

11



where
vf = Poisson's ratio for isotropic fibers.

The minor Poisson's ratio is defined as usual from the symmetric properties of the compliance
matrix:

e22(t)
V21(t) = V12 (t)--

Ell(t)
(39)

In order to obtain the time-dependent strain values of the individual plies within the laminated beam,

one can use the elastic viscoelastic correspondence principle. Due to the fact that the determination

of strains in composite laminates is critically dependent on stiffness parameters for each ply, as well

as stiffness parameters for the laminate, a closed-form solution to the time-dependent strains is

considerably more elaborate than what is expressed in equation (26). In fact, one will realize that

even for the simplest problems (cantilever laminated beam), although a closed-form solution is

possible, it is not time nor cost effective to expect a design engineer to obtain them. For more

complex mathematical models, the function to be inverted is often known only for discrete positive

real values of the transform parameter therefore making it very difficult if not impossible to obtain an

exact solution. A more effective approach is the application of numerical inversion methods to obtain

the approximate transformed solution. A widely used and effective method of inversion is the
collocation technique due to Schapery.13

B. The Collocation Method

This numerical inversion technique is readily applicable to a general class of problems that
have a solution of the form:9

f(t) = r 1 + 1"2 t + g(t) (40)

where F_ and F 2 are constants, and g(t) is the transient component of the solution. The transient

component is no_ally expressed, approximately, as a sum of exponential functions or:

m

g(t) = E hv e-t/a"

v=l

(41)

where hv and o_v are constants.

The time-dependent axial strain due to bending can be written according to equations (40)
and (41) as:

m

eb(t) = Fl + F2t + ___hve -t/a" (42)
v=l

After the material experiences the creep that is characteristic of viscoelastic materials, it is assumed

that the long-term value of strain is approximately constant. In reality, this long-term strain is not
constant, but for many materials, its rate of change is very small. With this assumption, the linear

time-dependent component of equation (42) vanishes, yielding:

12



m

eb(t ) = r I + _._ h.e -'la" (43)
v=l

In the Laplace domain, equation (43) can be expressed as:

where

and

Equation (44) is now written as:

_e(_) = SVl(_)+_g(_) ,

sF_(s)= _[-_] =r_,

hy

= I,,+,/o,,,)
v=I

shv
SEb(S) = rl + (s + l/Otv)

v=l

(44)

(45)

In order to try to minimize the error of the approximation given by _(s), the transform of the approx-

imate solution should be equal to the transform of the exact solution, at least at the m discrete
values of s:

g(S)e_t I =-g(S)approx I
s=I/a. _=I/a.

w= 1,2,3 .... m .

where

Considering equation (46), equation (45) can be expressed as:

(w = 1,2,3 .... m)

m

At t = 0, equation (43) can be solved for the constant F v It is written as:

m

r, = ,_(,o)-E h.

(46)

(47)

(48)

v=l

13



Letting s = l/tr_ on the right-hand side of equation (47) and substituting equation (48) into equation

(47) yields, after rearranging:

(49)

The expression for cry is: 9

t:tj = e (7-2j) (j = 1,2,3..., m) . (50)

Substituting equation (50) into the left-hand side of equation (49) yields:

v_l=[1+e h2_w-v) ] - e b(t°) -

I
_b(s) I (51)S

I$=1#_ w

All quantities in the set of equations (5i) are either known or can be determined at the discrete

values of the Laplace parameter s except the constants h v. Solving for the h v' s gives the necessary

information to evaluate equation (48). A final substitution into equation (43) yields the expression

for the time-dependent strain.

C. Determination of Time-Dependent Strain

For the problem of a multilayered viscoelastic composite beam, the time-dependent response

is readily obtained using an appropriate numerical method. The collocation method is used in this

section to obtain the axial strain of the cantilever beam due to bending.

For symmetric laminates under bending loads, the stresses in the k th ply of the beam can be

expressed as:

o,]"' 1--I i 'I' (52)

where Qij are the transformed reduced stiffnesses of the ply and _ are the curvatures.ll v) From the

moment-curvature constitutive relations for bending of composite laminates, one can write:

(53)

14



whereDij are the components of the inverted bending stiffness matrix. For one-dimensional beam

problems, the following assumption is made:

My = Mxy = 0 . (54)

Expressions for the transformed reduced stiffnesses can be found in Jones 11 and Whitney la and will

not be repeated here. Substituting equations (53) and (54) into (52) yields the expressions relating
stresses to the ply and laminate stiffnesses, and the applied moment. For the axial direction

(maximum bending stress direction), the stress is expressed as:

(55)

From the classical lamination theory, the bending stiffnesses are expressed as:

/I

1 _//)k)(z_ - z_-l) •
DU= "3k=l

(56)

Once the stresses have been determined, one can express the strains in terms of the stresses by

transformation of the strain-stress relations from principal material directions to body coordinates.

The resultant expression is:

,/ / l ,i (57)

where Sq are the components of the transformed compliance matrix for the k th ply. Once again

expressions for the components of the transformed compliance matrix can be found in Jones 11 and

Whitney 14 and will not be repeated here.

Using the elastic-viscoelastic correspondence principle, the solution for the time-dependent

strains can be obtained. The procedure is as follows:

1. Determine the analytical expressions for the time-dependent relaxation modulus and

Poisson's ratio (equations (30) and (37)).

2. Obtain the Laplace transforms of these functions and determine the associated elastic

expressions (equations (16) and (16a)).

. Calculate the values of the longitudinal and transverse properties for the unidirectional ply

by transforming equations (31), (32), (33), (38) and (39) into the Laplace domain and

substituting the values from step 2.

15
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.

,

o

8.

.

Calculate the reduced stiffness matrix, compliance matrix, transformed reduced stiffness

matrix, and transformed compliance matrix in terms of the unidirectional ply properties
from step 3.

With the information in step 4, calculate the laminate bending stiffness matrix (equation
(56)).

Identify the applied loads (moments) in the Laplace domain. For a constant moment, this
is simply dividing the moment by the Laplace parameter.

Calculate stresses and strains using equations (52) and (57).

Express the calculated strains as the "associated elastic" solution by simply multiplying
the calculated strains from step 7 by the Laplace parameter s.

Solve for the constants, h v, from equation (51). In expanded form, equation (51) can be
written as:

1 1 1 1 I 1

21 l+e-21 l+e-'1 l+e-61 1+1e-8 1 +i-1°

1+e21 21 l+e-2 l+e-4 1-_ 1+_ :_1 1

l+e 4 l+e 2 -2 l+e-2 i + e-'-_" i + _--6
1 1 1 1 1 1

l+e 6 l+e 4 l+e 2 2 l+e -2 l+e -4
1 1 1 1 1 1

l+e 8 l+e 6 l+e 4 l+e 2 2 l+e -2
1 1 1 1 1 1

l+e 1° l+e 8 l+e 6 l+e 4 l+e f

h3

Cb(to)--S'_b(S_s=e-5

gO(to )- s-_b(s)ls=e_,

eb(to )-- s'_b(s)ls=e

10. Calculate the constant F 1 from equation (48).

11. Obtain the final expression for time-dependent strain by substituting the constants from
steps 9 and 10 into equation (43).

D. Determination of Time-Dependent Deflection

For the one-dimensional beam, the Euier-Bernouili equation for a composite orthotropic
laminate is expressed as:

d2w

= D_I(t)M x • (58)
dx 2

16



For a cantilever beamof constantcrosssectionand thickness,the bendingstiffnessparameter

Dll(t ) is independent of x, and integrating equation (58) twice yields the expression for the deflec-
tion of the beam. In this manner, one obtains:

* 3
Dll(t)P o lS

w = - (59)
3

The procedure to calculate the time-dependent deflection now follows the one described in

section IV.C with the following difference.

After step 7, the load P, like the moment, is divided by the Laplace parameter. Equation (59)

is then calculated for the value of the Laplace parameter. This is repeated for each value of Laplace

parameters chosen for the analysis. Equation (51) is again solved with the values of deflection used

instead of the values of strain. The constants a v and h v are again calculated, and a final expression

for the time-dependent deflection is then obtained.

E. Determination of Time-Dependent Natural Frequency

The natural frequency of a one-dimensional composite orthotropic beam can be determined

from the elastic beam frequency equation by simply making the following substitution into equation
(6):

b
E1 = (60)

Oil(t)

With this substitution, the resulting expression for natural frequency is:

co = 3.516011 • bOil (t)mL 4 (61)

Again the steps to obtain the time-dependent natural frequency are the same as in the time-depen-
dent strain and deflection with one exception. Notice that the expression for natural frequency is

independent of applied load. Equation (61), once expressed in the Laplace domain, becomes the

associated elastic expression. In other words, _(s) = co(s). The values of the constants a,, and h,,

are again calculated, and the final expression for time-dependent natural frequency also takes the

form of equation (51).

AI

V. NUMERICAL EXAMPLES

Single-Phase Viscoelastic Beam Problem

As a first example of the determination of time-dependent strains and deflection of a can-

tilever beam of a linear viscoelastic material, the case of a single-phase material will be investi-
gated. This problem is by no means a new one. It is presented here to demonstrate a simple appli-

cation of the "correspondence principle" and its usefulness to the design engineer.
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Figures2 and 3 show plots of the relaxation modulus and Poisson's ratio, respectively, for
the material described in equations (11) and (14). The constants for both equations are defined in

section III.A. The material presented here is a fictitious one, but the curves represent typical ones
for actual viscoelastic materials.

Appendix A. contains the computer program "RELAX" which identifies the step-by-step

procedure to determine the time-dependent strain and deflection of a linear viscoelastic cantilever
beam of constant cross section. For this example, the applied load is 25 lb at the tip (free end) of the

beam. The length of the beam is 29.25 inches, the width is 5 inches, and the thickness is 1 inch. The

program produces the following results for equations (26) and (29):

21 = -0.00514282

&2 = -986.113154

A3 = -9.859137

Mo= 5.555555E-6

MI= -2.698453E-6

M2= -3.911196E-8

M3= -4.023282E-8 •

The plots of strain and deflection from this run of "RELAX" are shown in figures 4 and 5, respec-

tively. "RELAX" also calculates the deflected shape of the beam as a function of time. This shows
how the beam relaxes with time, thus yielding a deflection that increases as time passes. The points

in time selected for the plot are t = 0 h, t = 10 h, t = 100 h, and t = 1,000 h. This is plotted in figure 6.

B. Two-Phase Viscoelastic Beam Problem

Many composite materials have, as constituents, a time-dependent component (polymer

matrix) and fibers or particulates that are made from materials that have properties that are rela-

tively insensitive to creep or relaxation (graphite, boron, silicone-carbide, etc.). In these cases, the

problem of determining the time-dependent response to applied loads becomes more involved, and in

many cases, closed-form solutions are not available. The intent of this section is to use the corre-

spondence principle and apply the collocation method 13 to a laminated composite cantilever beam
loaded at the free end to determine the strain, deflection, and natural frequency as a function of time.

The application of the procedure to different problems has been well documented, s 9 The approach is

given in section IV and is applied and explained in a step-by-step manner in the computer program

"VISCOBM" found in appendix B.
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Figure 6. Deflected shape of a single-phase viscoelastic cantilever beam at various times.

One will notice, when using the collocation method, that the accurate determination of the

initial response (t = 0) is critical to the proper solution of the viscoelastic problem. For this purpose,

a computer program "VIST0" is included in appendix C. This program is nothing more than

"VISCOBM" at time t = 0. It is important to point out that it is not necessary to create a separate
program for this condition since running 'WISCOBM" at t = 0 would accomplish the same results. It

is done this way here as a means of simply demonstrating the method.

Figure 7 shows the calculated time-dependent strain for various ply lay-up angles of a four-

ply symmetric beam. It is interesting to see how the lay-up angle plays a significant role in the long-

term strain values. Figure 8 shows the same trends for deflection. Figure 9 illustrates that increas-
ing the fiber content of the composite not only increases the stiffness of the beam but it also reduces

the long-term effects of relaxation in the beam. Figure 10 shows the significant drop in natural
frequency of the beam as a function of time.

VI. LIMITATIONS OF THE CORRESPONDENCE PRINCIPLE

A very important limitation to the application of the correspondence principle must be

explained. The knowledge of the state of the boundary conditions must be known in order to apply
this method effectively. 15

If the interface between the surfaces where the stress is prescribed and where the displace-

ments are prescribed changes with time, the correspondence principle is not applicable. The condi-

tions of each surface, however, can be time-dependent. The illustration in figure 11 shows how the

shaded area (interface boundary area) in a viscoelastic medium changes as a function of time for a

spherical indentor. For a cylindrical indentor, the interface boundary does not change. An example of

a changing interface boundary is the increasing inner diameter of a solid propellant motor as it is

consumed during operation.
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VH. CONCLUSIONS

The elastic-viscoelastic correspondence principle is a very effective and straightforward tool

for determining the time-dependent response of viscoelastic structures to applied loads. The design

engineer can use this knowledge to optimize parameters such as ply lay-up angle, fiber volume

content, and configuration variables. This can help to minimize or maximize the effects of creep or

relaxation depending on the functional use of the hardware designed. The examples presented offer

the design engineer the capability to understand the effect that a viscoelastic material can have on

the performance of structures.

Although not included here, temperature and exposure to environmental effects (ultraviolet

light, ozone, atomic oxygen, etc.) can play an important role in the degradation of the material

properties. These effects should be included in the development of the basic material properties such
as the relaxation modulus, creep compliance, and Poisson's ratio.

As composite materials become more widely used in aerospace applications, the effects of

long-term exposure to the space environment can become a significant factor in the geometry and

specifications of the hardware. With the method presented here, the design engineer has the tools
necessary to alter initial designs which have not taken into consideration the time-dependency

factor. This will provide for more structurally sound and efficient structures.
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APPENDIX A

COMPUTER PROGRAM "RELAX"
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C***********************************************************************

C R E L A X

C PROGRAM TO DETERMINE THE TIME DEPENDENT STRAIN AND

C DEFLECTIONS OF A SINGLE PHASE VISCOELASTIC

C CANTILEVER BEAM

************************************************************************

IMPLICIT DOUBLE PRECISION(A-H,O-Z)

DIMENSION XL(4),XLMD(3),RI(3),FA(3),GA(3),XM(3)

OPEN(UNIT=7,FILE='C:\FORTRAN\RELAX.DAT')

OPEN(UNIT=8,FILE='C:\FORTRAN\STRAIN.DAT °)

C ..... - .....

IDENTIFY BEAM GEOMETRY AND APPLIED LOAD

C .....

P = 25.00

XLTH = 29.25

WIDE = 5.00

THK = 1.00

CALCULATE MOMENT OF INERTIA AND SPECIFIC CONSTANTS

XINRT = (WIDE*(THK**3))/12.

FIXZ = 12*P*XLTH*(THK/2)/(WIDE*(THK**3))

Q = 4.*p*;(XLTH**3)/(WIDE*(THK**3))

T = 0.0001

C ........

C

C-"

IDENTIFY MATERIAL CONSTANTS FOR RELAXATION MODULUS FUNCTION

A = 180000.

B1 = 5000.

B2 = 5000.

B3 = 170000.

GAMAI = I000.

GAMA2 = 10.

GAMA3 = .01

C--- ....
w-m-

CALCULATE RELAXATION MODULUS

DO 20 I = 1,1301

E = A + BI*EXP(-GAMAI*T) + B2*EXP(-GAMA2*T) + B3*EXP(-GAMA3*T)

WRITE (7, *)T,E

T = T + 1

20 CONTINUE

C-- '....

C CALCULATE CONSTANTS FOR CALCULATION OF STRAIN AND

C DEFLECTION IN THE LAPLACE DOMAIN

F1 = GAMAI + GAMA2 + GAMA3

F2 = GAMAI *GAMA2 + GAMA2 *GAMA3 + GAMA3 *GAMAI

F3 = GAMAI *GAMA2 *GAMA3

F4 = GAMA2 + GAMA3

F5 = GAMA2 *GAMA3

F6 = GAMAI + GAMA3

F7 _ GAMAI*GAMA3
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F8 = GAMAI + GAMA2

F9 = GAMAI*GAMA2

XL(1) = A + B1 + B2 + B3

XL(2) = A'F1 + BI*F4 + B2*F6 + B3*F8

XL(3) = A'F2 + BI*F5 + B2*F7 + B3*F9

XL(4) = A'F3

C .....................

C OBTAIN THE ROOTS OF THE Ga(s) TERM IN THE DENOMINATOR OF EQUATION (20)

C

CALL CUBIC (XL, XLMD, RI)

WRITE (7, I0) XLMD(1) ,XLMD (2) ,XLMD(3)

I0 FORMAT(' THE REAL ROOTS OF Ga(s) ARE',3EI2.5)

WRITE (7, II)RI (I),RI (2),RI (3)

ii FORMAT(' THE IMAGINARY ROOTS OF Ga(s) ARE',3EI2.5)

C .....

C

C

C ......

CALCULATE THE "M" CONSTANTS OF EQUATION (24) BY HEAVISIDE'S

PARTIAL FRACTION EXPANSION THEOREM

XM0 = F3/XL(4)

XXM0 = F3/XXL(4)

WRITE(7,12)XM0

12 FORMAT(' THE CONSTANT Mo IS',EI2.5)

DO 21 I = 1,3

FA(I) = XLMD(I)**3+FI*XLMD(I)**2+F2*XLMD(I)+F3

GA(I) = 4.*XL(1)*XLMD(I)**3+3.*XL(2)*XLMD(I)**2+2.*XL(3)*XLMD(I)+

*XL(4)

XM(I) = FA(I)/GA(I)

WRITE(7,13)I,XM(I)

13 FORMAT(' M',II,' =',E12.5)

21 CONTINUE

CALCULATE THE TIME DEPENDENT STRAIN PER EQUATION (26)

C

C

C-

T = .0001

DO 22 I = 1,2500,5

STRN = FIXZ*(XM(1)*EXP(XLMD(1)*T)+XM(2)*EXP(XLMD(2)*T)+

*XM(3)*EXP(XLMD(3)*T)+XM0)

CALCULATE THE TIME DEPENDENT DEFLECTION PER EQUATION (29)

DEFL = Q*(XM(1)*EXP(XLMD(1)*T)+XM(2)*EXP(XLMD(2)*T)+

*XM(3)*EXP(XLMD(3)*T)+XM0)

WRITE(8,30)T,STRN, DEFL

30 FORMAT(lIE12.5)

T = T + 5

22 CONTINUE

C

C

C ....

CALCULATE THE DEFLECTED SHAPE OF THE CANTILEVER BEAM

AT SEVERAL DIFFERENT TIMES C0 hrs, i0 hrs, 100 hrs & 1000 hrs)

X = 0.0

DO 23 I = 1,21

Q1 = (P*XLTH*(X**2)/2. - P*(X**3)/6.)/XINRT

QIX = (P*XLTH*(X**2)/2. P*(X**3)/6.)
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C ..... _w_ ..........

C T = 0.0 hrs.

C------

T=0

DO = QI* (XM(1)*EXP(XLMD(1)*T)+XM(2)*EXP(XLMD(2)*T)+

*XM (3) *EXP (XLMD (3) *T) +XM0)

C .......

C T = 10.0 hrs.

C ................. -

T=I0

DI0 = QI*(XM(1)*EXP(XLMD(1)*T)+XM(2)*EXP(XLMD(2)*T)+

*XM (3) *EXP (XLMD (3) *T)+XM0)

C ..........................................

C T = 100.0 hrs.

C---

T=I00

DI00 = QI*(XM(1)*EXP(XLMD(1)*T)+XM(2)*EXP(XLMD(2)*T)+

*XM(3) *EXP (XLMD (3) *T) +XM0)

C ....... -- ........

C T = 1000.0 hrs.

C ........

T=I000

DI000 = QI*(XM(1)*EXP(XLMD(1)*T)+XM(2)*EXP(XLMD(2)*T)+

*XM(3)*EXP(XLMD(3)*T)+XM0)

WRITE(9,30)X,D0,DI0,DI00,DI000

X = X + 1.4625

23 CONTINUE

STOP

END
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APPENDIX B

COMPUTER PROGRAM "VISCOBM"
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C************************WWWWW********************************WW********

C PROGRAM TO DETERMINE THE TIME DEPENDENT STRAINS,DEFLECTION

C AND NATURAL FREQUENCY OF A COMPOSITE BEAM SUBJECTED TO BENDING LOADS

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION ALPHA (4)

DIMENSION

DIMENSION

DIMENSION

DIMENSION

DIMENSION

DIMENSION

DIMENSION

DIMENSION

DIMENSION

DIMENSION

DIMENSION

DIMENSION

DIMENSION

DIMENSION

DIMENSION

DIMENSION

E(4,22)

XNU (4,21) ,G(4, 12)

ZT(5)

D(6, 6), EPSX (4), EPSY (4), EPSXY (4)

SIGX (4), THK (4), SIGY (4), SIGXY (4)

SL (6), EMS (6), PMS (6)

STS1 (200), STS2 (200), STS3 (200), STS4 (200)

HI (6), H2 (6), H3 (6), H4 (6)

F1 (6) ,F2 (6) ,F3 (6) ,F4 (6), ALAP (6,6)

ALAP2 (6, 6), ALAP3 (6, 6), ALAP4 (6, 6)

QRII(4),QR22(4),QRI2(4),QR66(4),QR26(4),QRI6(4)

SRII (4), SR22 (4), SRI2 (4), SR66 (4), SR26 (4), SRI6 (4)

SII (4) ,$22 (4) ,S12 (4) ,$66 (4)

QII (4) ,Q22 (4) ,QI2 (4) ,Q66 (4)

XIN(31), CAL (31), XLAMD (4), F5 (6), ALAP5 (6, 6), H5 (6)

F6 (6), ALAP6 (6, 6), H6 (6)

C--

IDENTIFY OUTPUT FILES

C---

C

C ....

WIDTH

XLB =

C .....

C INPUT

C

OPEN(UNIT=I2,FILE='C:\FORTRAN\ACTUAL.DAT')

OPEN(UNIT=I3,FILE='C:\FORTRANkNORMAL.DAT')

INPUT WIDTH AND LENGTH OF BEAM

= 4.

29.25

VALUES OF THE LAPLACE PARAMETER AT DISCRETE POINTS

SL(1) = .0067379

SL(2) = .0497871

SL(3) = .3678794

SL(4) = 2.7182818

SL(5) = 20.0855369

SL(6) = 148.4131591

C-

C

C

C

C ........

C

C

C

C

C

C

INPUT VOLUME FRACTION FOR MATRIX AND FIBERS (VM & VF)

INPUT BULK MODULUS OF ELASTICITY FOR MATRIX (XK)

INPUT POISSON°S RATIO AND YOUNG'S MODULUS FOR FIBERS

INPUT TOTAL NUMBER OF PLIES (NLAY)

INPUT DENSITY OF A PLY (RHO)

VM = .38

VF = .62

(XNUF & EF)

3O
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XK = 400000.

EF = 33.33E6

XNUF = .2

NLAY = 4

PI = 3.14159

RHO = .057

C .................................

C CALCULATE SHEAR MODULUS FOR FIBERS

C ............................

GF = EF/(2*(I+XNUF))

C ............................

C INPUT PREVIOUSLY CALCULATED VALUE OF PLY BENDING STRAINS,

C DEFLECTION AND NATURAL FREQUENCY AT INITIAL TIME (T=0.0)

C (FROM VIST0.FOR)

C ....................

C THIS CASE IS 4 PLY [30/-30]symmetric

C ........

C--

EPS01 = .00140303

EPS02 = .000701517

EPS03 = .00000000

EPS04 = -.000701517

DEFT0 = 3.201

FREQ0 = 10.1

C INPUT PRONY COEFFICIENTS FOR RELAXATION MODULUS

C AND TIME DEPENDENT POISSON'S RATIO

C ...............................

C RELAXATION MODULUS COEFFICIENTS

C------

A1 = 180000.

B1 = 5000.

B2 = 5000.

B3 = 170000.

C .........

C

C ......................

AI3 = .425

BI3 = -.0020833

B23 = -.0020833

B33 = -.070833

C ................

C

C

C

C

C

C

C

C

C

POISSON'S RATIO COEFFICIENTS

CALCULATE THE RELAXATION MODULUS AND TIME DEPENDENT

POISSON'S RATIO FOR THE COMPOSITE SYSTEM MATRIX MATERIAL

IN THE LAPLACE DOMAIN

EMS(I) = RELAXATION MODULUS FOR MATRIX

PMS(I) = POISSON'S RATIO FOR MATRIX

SL(I) = LAPLACE PARAMETER

DO I000 LAP = 1,6

EMS(LAP) = A1 + SL(LAP)*BI/(SL(LAP)+I000.) + SL(LAP)*B2/(SL(LAP)+

i0.) + SL(LAP)*B3/(SL(LAP)+.01)

PMS(LAP) = AI3 + SL(LAP)*BI3/(SL(LAP)+I000.) +
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1

C ...........

C

C .....

SL(LAP)*B23/(SL(LAP)+I0.) + SL(LAP)*B33/(SL(LAP)+.01)

CALCULATE SHEAR MODULUS FOR THE MATRIX

GM = EMS(LAP)/(2*(I+PMS(LAP)))

C .......

C

C

C ......

i0

C ......

C

C

C ......

CALCULATE LONGITUDINAL AND TRANSVERSE PROPERTIES OF A

UNIDIRECTIONAL LAMINA (USING MICROMECHANICS APPROACH)

DO I0 I = I,NLAY

E(I,11) = EF*VF + EMS(LAP)*VM

E(I,22) = EF*EMS(LAP)/(VM*EF + VF*EMS(LAP))

GNUM = GF*(PI+4*VF) + GM*(PI-4*VF)

GDEN = GF*(PI-4*VF) + GM*(PI+4*VF)

GN = GNUM/GDEN

GI21 = ((4-PI)+PI*GN)/4

G122 = 4*GN/((4-PI)*GN+PI)

G(I,12) = (GM/2)*(GI21 + G122)

XNU(I,12) = XNUF*VF + PMS(LAP)*VM

XNU(I,21) = XNU(I,12)*E(I,22)/E(I,II)

CONTINUE

INPUT THE ANGULAR ORIENTATION OF EACH

THE LONGITUDINAL AXIS OF THE LAMINATE

LAMINA WITH RESPECT TO

ALPHA(I) = 30.0

ALPHA(2) = -30.0

ALPHA(3) = -30.0

ALPHA(4) = 30.0

C ..........

C CALCULATE THE REDUCED STIFFNESS COEFFICIENTS FOR EACH LAMINA

C-' ....

DO ii I = I,NLAY

QII(I) = E(I,II)/(I.-XNU(I,12)*XNU(I,21))

QI2(I) = XNU(I,12)*E(I,22)/(I.-XNU(I,12)*XNU(I,21))

Q22(I) = E(I,22)/(I.-XNU(I,12)*XNU(I,21))

Q66(I) = G(I,12)

C .............

C CALCULATE THE COMPLIANCE MATRIX COEFFICIENTS FOR EACH LAMINA

C .....

C ......

SII(1) = I/E(I,II)

SI2(I) = -XNU(I,12)/E(I,II)

$22(I) : I/E(I,22)

$66(I) = I/G(I,12)

C CALCULATE THE TRANSFORMED REDUCED STIFFNESSES FOR EACH LAMINA

C" ............

C

ALPHA(I)

QRII(I)

QRI2(I)

= ALPHA(I)*PI/180.

= QII(I)*(COS(ALPHA(I)))**4

+2.*(QI2(I)+2.*Q66(I))*((SIN(ALPHA(I)))**2)*

((COS(ALPHA(I)))**2)+Q22(I)*(SIN(ALPHA(I)))**4

= (QII(I)+Q22(I)-4.*Q66(I))*((SIN(ALPHA(I)))**2)*

((COS(ALPHA(I)))**2)+QI2(I)*((SIN(ALPHA(I)))**4+
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2 (COS(ALPHA(I)))**4)

C

C

C
C
C ......

C

C

QRI6(I) (QII(I)-QI2(I)-2.*Q66(I))*((COS(ALPHA(I)))**3)*

SIN(ALPHA(I) )+ (QI2 (I) -Q22 (I)+2. *Q66 (I)) *COS (ALPHA(I)) *

(SIN(ALPHA(I)) ) **3

QR22(I) QII (I) * (SIN(ALPHA(I)) )**4

+2 .* (QI2 (I) +2. *Q66 (I)) * ((SIN(ALPHA(I)) ) **2) *

((COS(ALPHA(I)) ) *'2) +Q22 (I) * (COS(ALPHA(I)) ) **4

QR26(I) = (QII(I)-QI2(I)-2.*Q66(I))*((SIN(ALPHA(I)))**3)*

COS(ALPHA(I))+(QI2(I)-Q22(I)+2.*Q66(I))*SIN(ALPHA(I))*

(COS(ALPHA(I)))**3

QR66(I) = (QII(I)+Q22(I)-2.*QI2(I)-2.*Q66(I))*((SIN(ALPHA(I)))**2)

*((COS(ALPHA(I)))**2)+Q66(I)*((SIN(ALPHA(I)))**4+

(COS(ALPHA(I)))**4)

...........................................................

CALCULATE THE TRANSFORMED COMPLIANCE COEFFICIENTS FOR EACH LAMINA

..............................

SRII(I) = SII(I)*(COS(ALPHA(I)))**4

+(2.*S12(I)+ S66(I))*((SIN(ALPHA(I)))**2)*

((COS(ALPHA(I)))**2)+S22 I)*(SIN(ALPHA(I)))**4

SR12(I) = (SII(I)+S22(I)-S66(I))*((SIN(ALPHA(I)))**2)*

((COS(ALPHA(I)))**2)+SI2(I)*((SIN(ALPHA(I)))**4+

(COS(ALPHA(I)))**4)

SRI6(I) (2.*SII(I)-2.*SI2(I)-S66(I))*((COS(ALPHA(I)))**3)*

SIN (ALPHA (I)) - (2"$22 (I) -2"S12 (I) -$66 (I)) *COS (ALPHA (I)

)* (SIN(ALPHA(I)) )**3

SR22 (I) SII(I)*(SIN(ALPHA(I)))**4

+(2*SI2(I)+S66(I))*((SIN(ALPHA(I)))**2)*

((COS(ALPHA(I)))**2)+S22(I)*(COS(ALPHA(I)))**4

SR26(I) (2*SII(I)-2*SI2(I)-S66(I))*((SIN(ALPHA(I)))**3)*

COS(ALPHA(I))-(2*S22(I)-2*SI2(I)-S66(I))*SIN(ALPHA(I)

)*(COS(ALPHA(I)))**3

SR66(I) = 2*(2*SII(I)+2*S22(I)-4.*SI2(I)-S66(I))*((SIN(ALPHA(I))

1 )**2)*((COS(ALPHA(I)))**2)+S66(I)*((SIN(ALPHA(I)))**4+

2 (COS(ALPHA(I)))**4)

II CONTINUE

C *******************************************************

C * RELATE EACH LAMINA THICKNESS TO ITS LOCATION WITHIN *

C * THE LAMINATE (Z COORDINATE IS 0 AT THE MIDSURFACE) *

C *******************************************************

C ....................................................................

C INPUT LAMINA THICKNESSES

C ....................................................................

DO 998 J = I,NLAY

THK(J) = .0625

998 CONTINUE
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C .......

TOTTH = 0.0

DO 25 J = I,NLAY

TOTTH = TOTTH + THK(J)

25 CONTINUE

C-u. ..........

CALCULATE THE TOTAL WEIGHT OF THE BEAM

TOTWT = WIDTH*TOTTH*XLB*RHO

C ........

HAFTH = TOTTH/2.

ZT(NLAY) = HAFTH

DO 24 J = IoNLAY

LAM = NLAY - J + 1

ZT(NLAY-J) = ZT(LAM) - THK(LAM)

24 CONTINUE

DO 40 J = I,NLAY+I

40 CONTINUE

C .........

C CALCULATE BENDING STIFFNESSES FOR THE ENTIRE LAMINATE

C ........

DII = 0 0

DI2 = 0 0

DI6 = 0 0

D22 = 0 0

D26 = 0 0

D66 = 0 0

DO 35 J = I,NLAY

L = J + 1

DII = DII + QRII(J)*((ZT(L-I)**3.)-(ZT(L-2)**3.))/3

DI2 = DI2 + QRI2(J)*((ZT(L-I)**3.)-(ZT(L-2)**3.))/3

DI6 = DI6 + QRI6(J)*((ZT(L-I)**3.)-(ZT(L-2)**3.))/3

D22 = D22 + QR22(J)*((ZT(L-I)**3.)-(ZT(L-2)**3.))/3

D26 = D26 + QR26(J)*.((ZT(L-I)**3.)-(ZT(L-2)**3.))/3

D66 = D66 + QR66(J)*((ZT(L-I)**3.)-(ZT{L-2)**3.))/3

35 CONTINUE

C CALCULATE THE DETERMINANT OF THE _TIFFNES$ MATRIX

C" -- ...........

DETER = DII*D22*D66 + DI2*D26*DI6 + DI6*DI2*D26

1 - DI6*DI6*D22 - DI2*DI2*D66 - D26*D26*DII

C CALCULATE COEFFICIENTS FOR THE COFACTORS OF THE STIFFNESS MATRIX

C ..................

DIIC = D22*D66 - D26*D26

DI2C = -(DI2*D66 - DI6*D26)

DI6C = DI2*D26 - DI6*D22

C .... - ....... - ......................

C CALCULATE THE COEFFICIENTS OF THE INVERSE STIFFNESS MATRIX

C .....

DIIS = DIIC/DETER

DI2S = DI2C/DETER

DI6S = DI6C/DETER

WRITE(13,*)' DIIS =',DIIS
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C .........................................

C IDENTIFY APPPLIED MOMENTS

C .............................................

C THE LOAD MUST BE EXPRESSED IN THE LAPLACE DOMAIN

C LOAD(S) = LOAD/SL(LAP) [for a CONSTANT load]

C .....

XMAP = -292.5/WIDTH

XMAP = XMAP/SL(LAP)

PLOAD = 10./SL(LAP)

.......................

*************** PERFORM DEFLECTION CALCULATIONS ******************

CALCULATE THE CURVATURE AT ANY POINT ALONG THE LENGTH OF THE BEAM

C

C

C

C

C

INMI = 30

XIN(1) = 0.0

DO 805 K = 2,31

XIN(K) = XIN(K-I)+XLB/INMI

805 CONTINUE

DO 804 NI = I,INMI+I

CAL(NI) = DIIS*PLOAD*(XLB-XIN(NI))/WIDTH

804 CONTINUE

PERFORM A POLYNOMIAL CURVE FIT FOR THE CURVATURE AT

ANY POINT ALONG THE LENGTH

CALL POLYCF(XIN, CAL, 31,3,XLAMD, NERR)

......................

CALCULATE THE TIP DEFLECTION OF THE BEAM BY INTEGRATING THE

CURVATURE TWICE WITH RESPECT TO THE LENGTH COORDINATE

.......................

DEF = 0.0

DO Iii J = 1,4

DEF = DEF + XLAMD(J)*(XLB**(J+I))/(J*(J+I))

III CONTINUE

C CALCULATE THE ASSOCIATED ELASTIC NATURAL FREQUENCY OF THE BEAM

C ...........................................

FREQ = 3.51601*SQRT((WIDTH*386.4)/(DIIS*TOTWT*(XLB**4)))

C .........................

C IDENTIFY THE DEFLECTION AS THE ASSOCIATED ELASTIC

C SOLUTION MULTIPLIED BY THE LAPLACE PARAMETER

C ..............

DEF = DEF*SL(LAP)

C ...................................

C CALCULATE THE STRESSES FOR EACH LAMINA

C .....

DO 36 J = I,NLAY

L = J + 1

SIGX(J) = ZT(L-2)*XMAP*(QRII(J)*DIIS +QRI2(J)*DI2S +QRI6(J)*DI6S)

SIGY(J) = ZT(L-2)*XMAP*(QRI2(J)*DIIS +QR22(J)*DI2S +QR26(J)*DI6S)

SIGXY(J) = ZT(L-2)*XMAP*(QRI6(J)*DIlS +QR26(J)*DI2S +QR66(J)*DI6S)

36 CONTINUE
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C

CALCULATE THE TIME DEPENDENT STRAINS FOR EACH LAMINA

37

DO 37 J = I,NLAY

EPSX(J) = SRII(J)*SIGX(J)+SRI2(J)*SIGY(J)+SRI6(J)*SIGXY(J)

EPSY(J) = SRI2(J)*SIGX(J)+SR22(J)*SIGY(J)+SR26(J)*SIGXY(J)

EPSXY(J) = SRI6(J)*SIGX(J)+SR26(J)*SIGY(J)+SR66(J)*SIGXY(J)

CONTINUE

IDENTIFY STRAINS FOR EACH LAMINA AS THE ASSOCIATED ELASTIC

STRAINS MULTIPLIED BY THE LAPLACE PARAMETER

DO 38 J = I,NLAY

EPSX(J) = EPSX(J)*SL(LAP)

EPSY(J) = EPSY(J)*SL(LAP)

EPSXY(J) = EPSXY(J)*SL(LAP)

38 CONTINUE

C .........

C

C

C

C

C ......

CALCULATE DIFFERENCE BETWEEN STRAINS, DEFLECTION AND NATURAL

FREQUENCY AT TIME ZERO AND AT THE DISCRETE VALUES

OF THE LAPLACE PARAMETER FOR INVERSION BACK INTO

THE TIME DOMAIN

C

C

C

NOTE THAT ONLY THE STRAINS IN THE X DIRECTION ARE USED

FOR THIS PROBLEM

FI(LAP) = EPS01 - EPSX(1)

F2(LAP) = EPS02 - EPSX(2)

F3(LAP) = EPS03 - EPSX(3)

F4(LAP) = EPS04 - EPSX(4)

F5(LAP) = DEFT0 - DEF

F6(LAP) = FREQ0 - FREQ

WRITE(13,902)LAP,FREQ0,FREQ,F6(LAP)

902 FORMAT('LAP=',I2,' FREQ0=',EI2.5,' FREQ=',EI2.5,

1000 CONTINUE

' F6(LAP):',EI2.5)

C

C

C ...................

DO 1001 LAPW = 1,6

DO i001 LAPV = 1,6

ALPWV = EXP(2*(LAPW-LAPV))

PERFORM LAPLACE TRANSFORM INVERSION AND SOLVE FOR THE CONSTANTS

NEEDED FOR THE CALCULATIONS OF TIME DEPENDENT STRAINS

= i/(i + ALPWV)

= i/(I + ALPWV)

= I/(i + ALPWV)

= i/(I + ALPWV)

= i/(I + ALPWV)

= i/(I + ALPWV)

ALAP(LAPW, LAPV)

ALAP2(LAPW, LAPV)

ALAP3(LAPW, LAPV)

ALAP4(LAPW, LAPV)

ALAP5(LAPW, LAPV)

ALAP6(LAPW, LAPV)

CONTINUE

SOLVE SIMULTANEOUS EQUATIONS

CALL MATINV(ALAP, 6,FI,HI)

CALL MATINV(ALAP2,6,F2,H2)
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CALL MATINV(ALAP3,6,F3,H3)

CALL MATINV(ALAP4,6,F4,H4)

CALL MATINV(ALAP5,6,F5,H5)

CALL MATINV(ALAP6,6,F6,H6)

C .........................

C EVALUATE GAMMA CONSTANTS FROM INITIAL STRAIN CONDITIONS

C ....................................

SUMSTI = 0 0

SUMST2 = 0 0

SUMST3 = 0 0

SUMST4 = 0 0

SUMST5 = 0 0

SUMST6 = 0 0

DO 1002 LAP = 1,6

SUMST1 = SUMSTI + HI (LAP)

SUMST2 = SUMST2 + H2(LAP)

SUMST3 = SUMST3 + H3(LAP)

SUMST4 = SUMST4 + H4(LAP)

SUMST5 = SUMST5 + H5(LAP)

SUMST6 = SUMST6 + H6(LAP)

1002 CONTINUE

GAMAI = EPS01 SUMSTI

GAMA2 : EPS02 SUMST2

GAMA3 = EPS03 - SUMST3

GAMA4 = EPS04 - SUMST4

GAMA5 = DEFT0 - SUMST5

GAMA6 : FREQ0 - SUMST6

C .....................................

C CALCULATE TIME DEPENDENT STRAINS, DEFLECTION

C AND NATURAL FREQUENCY

C .........................................................

LTIME = 200

TIME = .0001

DO 1003 I = I,LTIME

STSI(I) = 0.0

STS2(I) = 0.0

STS3(1) = 0.0

STS4(I) = 0.0

DEFLEC = 0.0

FREQCY = 0.0

DO 1004 LAP = 1,6

STSI(I) = STSI(I) + HI(LAP)*EXP(-SL(LAP)*TIME)

STS2(I) = STS2(I) + H2(LAP)*EXP(-SL(LAP)*TIME)

STS3(I) = STS3(I) + H3(LAP)*EXP(-SL(LAP)*TIME)

STS4(1) = STS4(I) + H4(LAP)*EXP(-SL(LAP)*TIME)

DEFLEC = DEFLEC + H5(LAP)*EXP(-SL(LAP)*TIME)

FREQCY = FREQCY + H6(LAP)*EXP(-SL(LAP)*TIME)

1004 CONTINUE

STSI(1) = GAMAI + STSI(I)

STS2(I) : GAMA2 + STS2(I)

STS3(I) = GAMA3 + STS3(I)

STS4(I) = GAMA4 + STS4(I)

DEFLEC = GAMA5 + DEFLEC

FREQCY = GAMA6 + FREQCY
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WRITE(12,1006)I,TIME, STSI(I),STS2(I),STS3(I),STS4(I),DEFLEC,FREQCY

TIME = TIME*I.I

1003 CONTINUE

C .............

C

C

C

C--

NORMALIZE THE STRAINS WITH RESPECT TO THE MAXIMUM

FOR PURPOSES OF GRAPHING THE RESULTS

(TMAG = MAGNIFICATION FACTOR)

TIME = .0001

TMAG = 100.

DO 285 I = I,LTIME

STSI(I)=TMAG*STSI(I)/STSI(LTIME)

STS2(I)=TMAG*STS2(I)/STS2(LTIME)

C*******IF THE STRAIN IS ZERO (mid surface) DO NOT NORMALIZE***********

C STS3(I) IS THE STRAIN AT THE MIDDLE SURFACE

STS4(I)=TMAG*STS4(I)/STS4(LTIME)

WRITE(13,1006)I,TIME,STSI(I),STS2(I),STS3(I),STS4(I)

1006 FORMAT(I5,7EI2.5)

TIME = TIME*I.I

285 CONTINUE

STOP

END
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APPENDIX C

COMPUTER PROGRAM "VIST0"
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C***************************************************W*******************

C* PROGRAM TO DETERMINE THE INITIAL (T=0.0) STRAINS AND DEFLECTION *

C* OF A VISCOELASTIC COMPOSITE BEAM SUBJECTED TO BENDING LOADS *

************************************************************************

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION ALPHA(24)

DIMENSION E(24,22)

DIMENSION XNU(24,21),G(24,12)

DIMENSION Z(25),ZT(25)

DIMENSION D(6,6),EPSX(24),EPSY(24),EPSXY(24)

DIMENSION SIGX(24),THK(24),SIGY(24),SIGXY(24)

DIMENSION QRII(24),QR22(24),QRI2(24),QR66(24),QR26(24),QRI6(24)

DIMENSION SRII(24),SR22(24),SRI2(24),SR66(24),SR26(24),SRI6(24)

DIMENSION SII(24),$22(24),S12(24),$66(24

DIMENSION QII(24),Q22(24),QI2(24),Q66(24

DIMENSION XIN(31),CAL(31),XLAMD(4)

OPEN(UNIT=I3,FILE='C:\FORTRAN\VIST0.DAT'

C--- ..................... --

IFLAG = 0

C ..... - ................................

C IDENTIFY LAMINA MATERIAL PROPERTIES

C AT TIME T = 0.0 SECONDS

C ..... ----

C ....

C

C----

PI

WRITE(6

READ(5

WRITE(6

READ(5

WRITE(6

READ(5

WRITE(6

READ(5

WRITE(6

READ(5

WRITE(6

READ(5

WRITE(6

READ(5

*)' THE COMPOSITE RMATRIX" VOLUME FRACTION'

)VM

*)' THE COMPOSITE "FIBER" VOLUME FRACTION'

)VF

*)' THE "FIBER R MODULUS OF ELASTICITY'

)EF

*)' THE "MATRIX" RELAXATION MODULUS AT t=0'

)EM

*)' INPUT THE "MATRIX _ POISSONS RATIO AT t=0'

*) XNUM

*)' INPUT THE "FIBER _ POISSONS RATIO'

)XNUF

*)' INPUT THE "PLY" DENSITY'

* )RHO

= 3.14159

INPUT

INPUT

INPUT

INPUT

ENTER NUMBER OF PLIES

WRITE(6,*)' INPUT THE TOTAL NUMBER OF PLIES'

READ(5,*)NLAY

C .....................

C ENTER THE WIDTH AND LENGTH OF THE BEAM

C ..........................

WRITE(6,*)' INPUT THE WIDTH OF THE CANTILEVER BEAM'

READ(5,*)WIDTH

WRITE(6,*)' INPUT THE LENGTH OF THE CANTILEVER BEAM'

READ(5,*)XLB
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C .........................................

C CALCULATE SHEAR MODULUS FOR FIBERS AND MATRIX

C ......

GF = EF/(2*(I+XNUF))

GM = EM/(2*(I+XNUM))

C-

C CALCULATE PLY UNIDIRECTIONAL MATERIAL PROPERTIES

C (USING MICROMECHANICS APPROACH)

C ..............

DO i0 I = I,NLAY

E(I,II) = EF*VF + EM*VM

E(I,22) = EF*EM/(VM*EF + VF*EM)

GNUM = GF*(PI+4*VF) + GM*(PI-4*VF)

GDEN = GF*(PI-4*VF) + GM*(PI+4*VF)

GN = GNUM/GDEN

GI21 = ((4-PI)+PI*GN)/4

G122 = 4*GN/((4-PI)*GN+PI)

G(I,12) : (GM/2)*(GI21 + G122)

XNU(I,12) = XNUF*VF + XNUM*VM

XNU(I,21) = XNU(I,12)*E(I,22)/E(I,II)

CONTINUE

C

C

C ......

DO 702 IJ = I,NLAY

WRITE(6,*)' INPUT THE ORIENTATION

READ(5,*)ALPHA(IJ)

702 CONTINUE

C ........................................

C ......

C

C ......

INPUT THE ANGULAR ORIENTATION OF EACH LAMINA WITH RESPECT TO

THE LONGITUDINAL AXIS OF THE LAMINATE

..............................

I

2

C

(ANGLE) OF PLY NO.',IJ

C CALCULATE THE REDUCED STIFFNESS COEFFICIENTS FOR EACH LAMINA

C .......................................

DO 11 I = I,NLAY

QII(I) = E(I,]I)/(I.-XNU(I,12)*XNU(I,21))

QI2(I) = XNU(I,12)*E(I,22)/(I.-XNU(I,12)*XNU(I,21))

Q22(I) = E(I,22)/(I.-XNU(I,12)*XNU(I,21))

Q66(I) = G(I,12)

C .................................. _ ............................ i ....

C CALCULATE THE COMPLIANCE MATRIX COEFFICIENTS FOR EACH LAMINA

C ......................................................

Sll(I) = I/E(I,II)

$12(I) -XNU(I,12)/E(I,II)

$22(I) = I/E(I,22)

$66(I) = I/G(I,12)

................................................

CALCULATE THE TRANSFORMED REDUCED STIFFNESSES FOR EACH LAMINA

................................

ALPHA(I = ALPHA(I)*PI/180.

QRI](1) = QII(I)*(COS(ALPHA(I)))**4

+2.*(QI2(I)+2.*Q66(I))*((SIN(ALPHA(I)))**2)*

((COS(ALPHA(I)))**2)+Q22(I)*(SIN(ALPHA(I)))**4

QRI2(I) = (QII(I)+Q22(I)-4.*Q66(I))*((SIN(ALPHA(I)))**2)*

((COS(ALPHA(I)))**2)+QI2(I)*((SIN(ALPHA(i)))**4+
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2

C

1

2

C

1

2

C

1

2

C

1

2

C .....

QRI6 (I) =

QR22 (I) =

QR26 (I) =

QR66 (I) =

(COS(ALPHA(I)))**4)

(QII(I)-QI2(I)-2.*Q66(I))*((COS(ALPHA(I)))**3)*

SIN(ALPHA(I))+(QI2(I)-Q22(I)+2.*Q66(I))*COS(ALPHA(I))*

(SIN(ALPHA(I)))**3

QII(I)*(SIN(ALPHA(I)))**4

+2.*(QI2(I)+2.*Q66(I))*((SIN(ALPHA(I)))**2)*

((COS(ALPHA(I)))**2)+Q22(I)*(COS(ALPHA(I)))**4

(QII(I)-QI2(I)-2.*Q66(I))*((SIN(ALPHA(I)))**3)*

COS(ALPHA(I))+(QI2(I)-Q22(I)+2.*Q66(I))*SIN(ALPHA(I))*

(COS(ALPHA(I)))**3

(QII(I)+Q22(I)-2.*QI2(I)-2.*Q66(I))*((SIN(ALPHA(I)))**2)

*((COS(ALPHA(I)))**2)+Q66(I)*((SIN(ALPHA(I)))**4+

(COS(ALPHA(I)))**4)

C

C-

CALCULATE

C

C

C

SRII(I) =

i

2

SRI2(I) =

i

2

SRI6(I) =

i

2

SR22(I) =

I

2

SR26(I) =

1

2

SR66 (I) =

1

2

11 CONTINUE

C ...........

THE TRANSFORMED COMPLIANCE COEFFICIENTS FOR EACH LAMINA

SII(I)*(COS(ALPHA(I)))**4

+(2.*S12(I)+ S66(I))*((SIN(ALPHA(I)))**2)*

((COS(ALPHA(I)))**2)+S22(I)*(SIN(ALPHA(I)))**4

(SII(I)+S22(I)-S66(1))*((SIN(ALPHA(I)))**2)*

((COS(ALPHA(1)))**2)+SI2(I)*((SIN(ALPHA(I)))**4+

(COS(ALPHA(I)))**4)

(2. *SII (I) -2 .*S12 (I) -$66 (I)) * ( (COS (ALPHA(I)) ) *'3) *

SIN (ALPHA (I)) - (2"$22 (I) -2"S12 (I) -$66 (I)) *COS (ALPHA(I)

) * (SIN(ALPHA(I)) ) **3

SII(I)*(SIN(ALPHA(I)))**4

+(2*SI2(I)+S66(I))*((SIN(ALPHA(I)))**2)*

((COS(ALPHA(I)))**2)+S22(I)*(COS(ALPHA(I)))**4

(2*SII(I)-2*SI2(I)-S66(I))*((SIN(ALPHA(I)))**3)*

COS(ALPHA(1))-(2*S22(I)-2*SI2(I)-S66(I))*SIN(ALPHA(I)

)*(COS(ALPHA(I)))**3

2*(2*SII(I)+2*S22(I)-4.*SI2(I)-S66(I))*((SIN(ALPHA(I))

)**2)*((COS(ALPHA(I)))**2)+S66(I)*((SIN(ALPHA(I)))**4+

(COS(ALPHA(I)))**4)

C RELATE EACH LAMINA THICKNESS TO ITS LOCATION WITHIN THE

C LAMINATE (Z COORDINATE IS 0 AT THE MIDSURFACE)

C ................. - ...................................

C INPUT LAMINA THICKNESSES

C ........................

301 DO 998 J = I,NLAY

IF(IFLAG.EQ.0) THEN

WRITE(6,*)' INPUT THE THICKNESS OF PLY NO.',J

READ(5,*)THK(J)
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ENDIF

998 CONTINUE

IF(IFLAG.EQ.I)GO TO 302

C ...........................................

C CALCULATE THE WEIGHT OF THE LAMINATE

C ................................

TOTWT = 0.0

DO 700 NA -- I,NLAY

TOTWT = TOTWT + WIDTH*THK(NA)*XLB*RHO

700 CONTINUE

C ...........................

302 TOTTH = 0.0

DO 25 J = I,NLAY

TOTTH = TOTTH + THK(J)

25 CONTINUE

HAFTH = TOTTH/2.

ZT(NLAY) = HAFTH

DO 24 J = I,NLAY

LAM = NLAY J + 1

ZT(NLAY-J) = ZT(LAM) - THK(LAM)

24 CONTINUE

IF(IFLAG.EQ.I)GO TO 300

C ..........

C

C ...........

C

CALCULATE BENDING STIFFNESSES FOR THE ENTIRE LAMINATE

...........................................

D]I = 0.0

DI2 = 0.0

DI6 : 0.0

D22 = 0.0

D26 = 0.0

D66 = 0.0

DO 35 J = I,NLAY

L = J + 1

DII = Dll + QRII(J)*((ZT(L-I)**3.)-(ZT(L-2)**3.))/3.

DI2 = DI2 + QRI2(J)*((ZT(L-I)**3.)-(ZT(L-2)**3.))/3.

DI6 = DI6 + QRI6(J)*((ZT(L-I)**3.)-(ZT(L-2)**3.))/3.

D22 = D22 + QR22(J)*((ZT(L-I)**3.)-(ZT(L-2)**3.))/3.

D26 = D26 + QR26(J)*((ZT(L-I)**3.)-(ZT(L-2)**3.))/3.

D66 = D66 + QR66(J)*((ZT(L-I)**3.)-(ZT(L-2)**3.))/3.

35 CONTINUE

C CALCULATE THE DETERMINANT OF THE STIFFNESS MATRIX

C ....................................

DETER = DII*D22*D66 + DI2*D26*DI6 + DI6*DI2*D26

* - DI6*DI6*D22 - DI2*DI2*D66 - D26*D26*DII

C ......................................

C CALCULATE COEFFICIENTS FOR THE COFACTORS OF THE STIFFNESS MATRIX

C .........................................

DIIC = D22*D66 - D26*D26

DI2C = -(DI2*D66 - DI6*D26)

DI6C = DI2*D26 - DI6*D22
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C ...................

C CALCULATE THE COEFFICIENTS OF THE INVERSE STIFFNESS MATRIX

C ....................................................................

DIIS = DIIC/DETER

DI2S = DI2C/DETER

DI6S = DI6C/DETER

C ............................................

C IDENTIFY APPLIED MOMENTS (APPLIED LOAD)

C (LOAD APPLIED AT TIP [free end] OF BEAM)

C ................................

C

C

C

C

C

C

WRITE(6,*)' INPUT APPLIED LOAD AT THE TIP OF THE CANTILEVER BEAM'

READ(5,*)PLOAD

XMAP = -PLOAD*XLB/WIDTH
.............................................

*************** PERFORM DEFLECTION CALCULATIONS ******************

..............................

CALCULATE THE CURVATURE AT ANY POINT ALONG THE LENGTH OF THE BEAM

.............................

INMI = 30

XIN(1) = 0.0

DO 805 K = 2,31

XIN(K) = XIN(K-I)+XLB/INMI

805 CONTINUE

DO 804 NI = I,INMI+I

CAL(NI) = DIIS*PLOAD*(XLB-XIN(NI))/WIDTH

804 CONTINUE

C ...........................

C PERFORM A POLYNOMIAL CURVE FIT FOR THE CURVATURE AT

C ANY POINT ALONG THE LENGTH

C ............................

CALL POLYCF(XIN, CAL,31,3,XLAMD, NERR)

C ....................

C CALCULATE THE TIP DEFLECTION OF THE BEAM BY INTEGRATING THE

C CURVATURE TWICE WITH RESPECT TO THE LENGTH COORDINATE

C .....................................................

DEF = 0.0

DO 111 J = 1,4

DEF = DEF + XLAMD(J)*(XLB**(J+I))/(J*(J+I))

111 CONTINUE

WRITE(13,109)DEF

109 FORMAT(' THE TIP DEFLECTION AT TIME ZERO IS',EI2.5)

C .....

C

C-

CALCULATE THE NATURAL FREQUENCY OF THE CANTILEVER BEAM

C------

FREQ = 3.51601*SQRT((WIDTH*386.4)/(DIIS*TOTWT*(XLB**4)))

WRITE(13,*)' DIIS =',DIIS

WRITE(13,*)' WIDTH =',WIDTH

WRITE(13,*)' WEIGHT =',TOTWT

WRITE(13,*)' LENGTH =',XLB

WRITE(13,701)FREQ

701 FORMAT(' THE NATURAL FREQUENCY AT TIME ZERO IS',EI2.5,' HERTZ')
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C ...........

C

C ...........

300

CALCULATE THE STRESSES FOR EACH LAMINA

36

C

IFLAG = ]

GO TO 301

DO 36 J =

L = J + 1

SIGX (J) =

SIGY (J) =

SIGXY (J)

CONT INUE

C CALCULATE

C ........

C

I,NLAY

- 2

ZT(L)*XMAP*(QRII(J)*DIIS +QRI2(J)*D12S +QRI6(J)*DI6S)

ZT(L)*XMAP*(QRI2(J)*DIIS +QR22(J)*DI2S +QR26(J)*DI6S)

= ZT(L)*XMAP*(QRI6(J)*DIIS +QR26(J)*DI2S +QR66(J)*DI6S)

THE INITIAL (T=0.0) STRAINS FOR EACH LAMINA

WRITE(13,251)

251 FORMAT(' PLY',7X,'EPSX',IIX,'EPSY',IIX,'EPSXY'/)

DO 37 J = I,NLAY

EPSX(J) = SRII(J)*SIGX(J)+SRI2(J)*SIGY(J)+SRI6(J)*SIGXY(J)

EPSY(J) = SRI2(J)*SIGX(J)+SR22(J)*SIGY(J)+SR26(J)*SIGXY(J)

EPSXY(J) = SRI6(J)*SIGX(J)+SR26(J)*SIGY(J)+SR66(J)*SIGXY(J)

WRITE(13,250)J,EPSX(J),EPSY(J),EPSXY(J)

250 FORMAT(14,3EI5.6)

37 CONTINUE

STOP

END
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